α-Properness and Axiom A

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properness without Elementaricity

We present reasons for developing a theory of forcing notions which satisfy the properness demand for countable models which are not necessarily elementary sub-models of some (H(χ),∈). This leads to forcing notions which are “reasonably” definable. We present two specific properties materializing this intuition: nep (non-elementary properness) and snep (Souslin non-elementary properness) and al...

متن کامل

The Bounded Axiom A Forcing Axiom

We introduce the Bounded Axiom A Forcing Axiom(BAAFA). It turns out that it is equiconsistent with the existence of a regular Σ2-correct cardinal and hence also equiconsistent with BPFA. Furthermore we show that, if consistent, it does not imply the Bounded Proper Forcing Axiom(BPFA).

متن کامل

THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF AXIOM IN L-TOPOLOGICAL SPACES

In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived

متن کامل

Properness for Scaled Gauged Maps

We prove properness of moduli stacks of gauged maps satisfying a stability conditition introduced by Mundet [42] and Schmitt [48]. The proof combines a git construction of Schmitt [48], properness for twisted stable maps by Abramovich-Vistoli [1], a variation of a boundedness argument due to Ciocan-Fontanine-Kim-Maulik [13], and a removal of singularities for bundles on surfaces in Colliot-Thél...

متن کامل

A-properness and Fixed Point Theorems for Dissipative Type Maps

The A-proper class arises naturally when one considers the approximation solvability of nonlinear equations, that is, obtaining solutions of infinite-dimensional problems as limits of solutions of related finite-dimensional problems. The class was first introduced by Petryshyn, who made many important contributions to the theory, see, for example, [17, 18] for a good account of this. The A-prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2005

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm186-1-2